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Visual Alignment
3D Residual Formulas; Silicon Microtracker
Examples

Thomas G. Trippe

Introduction
The process of aligning detectors using reconstructed tracks is complex. It requires
careful selection of the events, track samples, and geometry elements to be used in each
step of the alignment.  It requires a well designed geometry system, such as the DØ
Geometry System, which allows control over the geometry parameters that enter the
reconstruction.  It requires the basic formulas for computing the changes in the geometry
parameters needed to align the selected geometry elements and a means of evaluating the
improvement in the alignment due to these changes.  It requires development of a
strategy for the sequence of successive alignments needed to produce a fully aligned
detector.

This note focuses on the basic alignment formulas and on techniques for visualizing
residuals. To do this, we introduce the concept of 3D residual vectors that can be
displayed to reveal misalignments, as well as used in calculations of alignment
parameters.

In track fitting, a residual is the distance between a track’s measured position and its
fitted position.  Such a residual can be represented as a 3-vector from the measurement to
the track along the closest distance of approach between them.  The error matrix for this
residual includes information on the precision of the measurement and of the fitted track
position, including the large (in principle infinite) uncertainty along the track direction.
For example, a single-sided silicon strip measurement is a line and the fitted track is a
line.  The 3D residual vector represents the closest distance of approach between these
two lines.  This 3D residual does not usually lie in the plane of the silicon detector, in
contrast to the usual 1D residual, which is usually defined as the signed scalar distance
from the track to the silicon strip in the plane of the detector.  Note that the sign
convention chosen here has 3D residual vectors pointing from measurements to fitted
tracks, so that the 3D residuals and their positions on the detector indicate the magnitude
and direction of the movements needed to align the detector.
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The advantage of 3D residuals with error matrices is that they contain all of the
information about the track orientation and the detector geometry needed do alignment.
In the 1D viewpoint, that information resides in the track orientation and detector
geometry instead of in the residuals themselves, so that to calculate χ 2 , one must use the
track orientation and detector geometry in addition to the residuals.  The 1D residuals
alone cannot give any indications of misalignments because they contain no direction
information.

The 3D residual viewpoint seems well adapted for visualization of alignment problems.
We can display a field of 3D residual vectors and their error ellipses more easily than
displaying 1D residuals, tracks, and detector measurements.  Since the 3D residual
vectors give the displacements at various points of the detector needed to align it,
combined with a random component, we can look at this residual field to decide whether
the detector is significantly out of alignment, and if so, which parts of the detector need
alignment.

Unless the misalignment is large compared with the measurement errors, it may not be
possible to get significant visual information from the individual residuals.  However, we
can combine the effects of the residuals on a given part of the detector by doing a χ 2

minimization to determine the translation and rotation needed for alignment.  We can
then display this translation and rotation for each detector part, instead of displaying all
of the individual residuals.  The translation and rotation represent averages over the
residual field. For example, in the absence of rotations, the resulting translation is just the
weighted average of the residuals.

If it proves to be useful, we could even develop an interactive alignment program in
which we could move the detector components by the amount indicated by the 3D
residuals and would get back a set of alignment parameters and an improved set of 3D
residuals.  This could be of use during the initial zeroeth order alignment.

A major advantage of the 3D residual viewpoint is that it is fairly detector independent.
The 1D residuals are detector specific, in the sense that they must be used in conjunction
with track orientations and with detector geometry (e.g. strip orientations) to determine
alignment parameters.  In contrast, the 3D residual fields are detector independent, in the
sense that they contain all information about track angles and detector geometry that are
needed to determine alignment parameters. The concepts discussed here for 3D residuals
and their error matrices are detector independent.  The alignment formulas are detector
independent, as long as the detector elements are rigid objects that can be aligned by
rotation and translation. This note gives the formulas for calculating alignment
parameters from 3D residuals, assuming that the detector elements are rigid objects.
Examples are given for silicon detectors.

The formulas for combining residuals to determine non-rigid transformations such as
scaling, distortion, and changing strip pitch are detector dependent and need to be
developed separately for each case.
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The 3D residuals themselves are not entirely detector independent.  Each residual is
associated with a detector element.  That allows us to select the residuals associated with
a particular part of the detector.  It also gives us access to the local coordinate system of
that part of the detector so that we can constrain the alignment parameters, for example to
allow motion only in the plane of a silicon ladder.

Note that in defining 3D residuals, the use of the 3-vector closest distance of approach
between the measurement and the track is not essential.  We could equally well have
chosen the 3-vector between the measurement and the track in the plane of the detector,
as long as we retain the correct three-dimensional error.  The error ellipse for this error
matrix has infinite extent along the track direction, so that the χ 2  contribution of a given
residual is completely insensitive to whether the residual touches the track at the closest
distance of approach or in the plane of the detector. The closest distance of approach
seems preferable from a visualization standpoint, although some might prefer working in
the plane of the detector, since it is more typical to evaluate residuals in this plane.

Formulas for 3D residual vectors
Let d be a residual vector pointing from track measurement position s to fitted track
position t, chosen so that std −=  and || d  is the closest distance of approach between
the measurement and the fitted track. Uncertainties in the measurement and fitted track
lead to uncertainties in d .  The uncertainties in the three components of d  are given by
the covariance matrix, or error matrix, E , whose diagonal elements are the squares of the
uncertainties in d ,  d  and dx y z, ,  and whose off-diagonal elements are the correlated
uncertainties, which can be significant, especially when they represent the very large
uncertainties along the track direction.  For a collection of residual vectors di  and their
covariance matrices Ei , we can calculate the χ 2  that these residuals are statistical
fluctuations:
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where i runs over all measurements of all tracks being considered in a particular
alignment step.  Matrices and vectors are written as bold-faced upper and lower case
letters, respectively.  In products of vectors and matrices, summations over the coordinate
indices are implied.  This χ 2 can be minimized with respect to alignment parameters,
such as the translations and rotations of components of the detector, to obtain best values
of the alignment parameters.

 If the detector part is rotated by R and then translated by h , Appendix A shows that the
residuals id  are transformed into id′  according to
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The id′  are linear in the translation components and, for small angles, the rotation angles,
so that  χ 2 ( , )Q h  can be minimized analytically. We linearize Q for small rotations jθ
around the x, y, and z axes by writing jjQQ θ= , with

Q1 = −
�

�

�
�
�

�

�

�
�
�

0 0 0
0 0 1
0 1 0

,  Q2 =
−

�

�

�
�
�

�

�

�
�
�

0 0 1
0 0 0
1 0 0

,  Q3 =
−�

�

�
�
�

�

�

�
�
�

0 1 0
1 0 0
0 0 0

.

Differentiating χ 2 ( , )Q h  with respect to the three rotation angles   of j Qθ and the three
components h of h k  and setting the differentials equal to zero yields six equations in the
six parameters nm h and θ :
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These six equations can be written as a single six-dimensional matrix equation

kMp =

where the six-by-six matrix M and six-vectors p of parameters and k of constants are
given by
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The minimum χ 2 solution for p, the rotation-translation six-vector, is

kMp 1−= .

Appendix A shows that VM =−1 , the error matrix of the parameters p, so that the
solution can be written

Vkp =

which expresses the parameters p  of the χ2 minimum in terms of their error matrix V
times the constant vector k.

Special case: pure translation, no rotation
To understand these formulas, consider some special cases.  The results are shown here
but more details are given in Appendix A.  If we set the rotation Q to zero, then only
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In other words, for purely translational alignment, h is the weighted average of the
residuals, weighted by the inverses of their error matrices.  The error matrix E for h is
just the inverse of the sum of the weights.
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Special case: pure rotation, no translation
Another special case is that of purely rotational alignment, with translation h zero, so that
only jmA  and jc  enter, yielding
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or, in matrix-vector notation,
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The rotation vector θθθθ is, like for translation h above, a weighted average over the
residuals di, but with a more complex weighting, discussed in more detail in Appendix A.

Special case: translation in one dimension only
Another special case is that of allowing only a single parameter to vary.  If only hj, the jth

component of h varies, then only a single equation, 0
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The inverse error squared  in hj is given by

( )�
−=

�
�

�

�

�
�

�

�
=

ijjh hh
j

j
1

ij uEu†
22

2 2
11

∂∂
χ∂

σ

Special case: rotation in one dimension only
Likewise, if we fix all but a single angular parameter θj are fixed, then only a single

equation 0
2

=
j∂θ

∂χ  remains, giving
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Histogramming residuals
As a check on the residuals it is useful to histogram them to see their distributions in one
dimension.  The distributions of residuals, normalized by their errors should be Gaussian
and peaked at zero if there are no misalignments.  If there are misalignments, the
distribution of unnormalized residuals should peak at a point whose distance from zero
reveals the magnitude of the misalignment. The unnormalized residuals corresponding to
the three translation parameters hj are
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These are just the components of the weighted averages of residuals in one dimension
given above, so that
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Similarly, the unormalized residuals corresponding to the three rotation angles θj are
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Example of Residual Formulas- Silicon
Detector
A track passing through a silicon wafer is expected to give rise to signals on a cluster of
one or more strips, or for double-sided silicon, a cluster on either side.  The clusters from
double-sided silicon are joined into 3D hits for DØ track finding. In the following
example, we do not join the clusters, but treat each side as a separate hit with a huge error
along the strip direction.  This allows a simpler illustration of the power of the 3D
residual error matrices to correctly contain strip (and track) direction information

s0

t0

a0u

b0v

d0

d

t
s

tra
ck
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r

Figure 1. A single-sided silicon wedge, a track normal to it and a cluster
displaced from the track by the 3D residual vector d . See text for details.

A fitted track will probably not pass directly through its cluster(s), due to reconstruction
errors and possibly to misalignment.  Figure 1 shows a single-sided silicon wedge with a
track significantly displaced from the cluster due to misalignment.
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The three-vector distance d  from the cluster to the fitted track is the 3D residual, and can
be derived as follows.  Any point s a( ) on a cluster can be represented by a vector s( )a
from the origin of the global frame to that point:

s s u0( ) ,a a= +

where the vector s0 points to a fixed position on the cluster, the unit vector u points along
the strip direction, and the variable a gives the distance from point s0 to point s a( ) .  The
track can be approximated in the vicinity of the cluster by a straight line, with any point
t b( )  on that track given by the vector t( )b :

t t v0( )b b= +

where t0  points to a fixed position on the track, the unit vector v points along the track,
and the variable b gives the distance along the track from point t0  to point t b( ) .

The vector from cluster point s a( )  to track point t b( )  is

d t s
d v u0

( , ) ( ) ( )a b b a
b a

= −
= + −

where ,000 std −=  the vector between the fixed positions on the track and cluster, as
shown in Figure 1.   The 3D residual d  is found by minimizing length of d( , )a b  with
respect to a and b by requiring that ∂ ∂ ∂ ∂d d( , ) ( , )a b a a b b= =0 0 and , which gives
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where cosγ = ⋅u v is the cosine of the angle between the track and cluster.  The vector
residual d , representing the closest distance of approach, is then

d d v u0= + −b a0 0 ,

and is shown in Figure 1.  The vector pointing to the origin of d on the cluster is

s s u0= + a0

and the vector pointing to the terminus of d on the track is
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t t v0= + b0 .

Covariance matrix for residuals
The residual vector d  represents the displacement that, if applied to the silicon cluster,
would align it with the track.  Only one component of d  is well measured, the component
along its length, with an uncertainty σ  equal to the silicon strip resolution, which is of
order ten microns.   The components perpendicular to d  are unmeasured.  In other words,
the silicon wafer could be moved along the cluster or the track without changing d .

To construct d , imagine a vector x  which lies along the x-axis, has the same length as
d , and the same length uncertainty σ .  It’s covariance matrix would then be
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where the infinite errors have been approximated by 103σ .

Rotating this to the direction of d  gives

E RE R 1= −
x .

where R  is a rotation around the axis �x d× by an angle � �x d⋅ , so that d Rx= .  This is the
covariance E  of the 3D residual d .

Combining 3D Residuals
Now consider forming a weighted average.  For example, consider a track passing
through a double-sided silicon wedge and perpendicular to it, as shown in Figure 2.
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Figure 2.  shows a two-sided silicon wedge with a track perpendicular to it
and with two cluster measurements of the track.  The weighted average of
the two residuals gives the amount by which the wedge is misaligned.

There are now two residual vectors, d1  and d2 .  The error matrix E1  represents an error
ellipse that is finite only along the direction of d1  and infinite along the cluster and along
the direction of the track.  Likewise the error ellipse corresponding to E2 is perpendicular
to the wedge and intersects it along the second cluster.  The translation h and its
covariance matrix E are given by the formulas for h  and E  above, for the special case
when only translations are being considered:
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The error ellipse corresponding to E is inscribed in the diamond where the two clusters
cross, and is infinite along the direction of the track, which is perpendicular to the wedge
in this example.  This means that the translation h needed to align the detector is well
measured in both dimensions in the plane of the silicon, but unmeasured along the track.
This illustrates how two residual vectors, d1  and d2 , each well measured in only one
dimension, combine to give an average residual, the translation h, which is well measured
in two dimensions.  It also illustrates that the error matrices of the residuals carry
information about the detector geometry, in this case, the strip orientations.

If several tracks strike the wedge at different angles, the weighted average of their
residuals will have finite errors in all three dimensions.  With at least three tracks at
different angles, the translation and rotation alignment parameters of the wedge can be
calculated.  Additional tracks over-constrain its alignment parameters.   



Draft version 03/30/01,  6:40 PM,  T. Trippe

13

Appendix A. Proofs of Equations
Formulas for 3D residual vectors
Consider a rotation R of the measurement positions si  followed by a translation h to give
new measurement positions '

is .

hRss i
'
i +=

 Fitted track positions ti remain stationary so that the original residuals di are transformed
to id′  as follows.
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The ′di  are linear in the values of the components hi of h  since h ui= hi  where the ui

are unit vectors along the axes. Q can be linearized for small rotations θι  around the x, y,
and z axes using Q Qi= θι , with
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 The ),(2 hQχ  that ′di , the residuals after rotation R )( 1RQ −= and translation h, are
equal to zero within their error matrices iE is
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Differentiating with respect to each of the six parametersθ j k and h  to minimize χ 2 ( , )Q h
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Because the error matrix is symmetric and real, E Ei i
− −=1 1† , so that the first terms of the

above two equations are the transpose  of the second terms.  Since the terms are real
scalar quantities, and since the transpose of a real scalar is equal to the scalar, the first
and second terms are equal.  The minimization condition that the six derivatives in the
above equation are equal to zero then yields the six equations
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These six equations can be solved for the rotation and translation yielding minimum 2χ .
They can be written



Draft version 03/30/01,  6:40 PM,  T. Trippe

15

j
n

njn
m

mjm chBA =+��
==

3

1

3

1
θ ,      j=1,3,

j
n

njn
m

mjm ghFD =+��
==

3

1

3

1
θ ,      j=1,3,

���
−−− ===

i
j

i
jn

i
jm cBA i

1
i

†
j

†
in

1
i

†
j

†
iim

1
iji dEQsuEQssQEQs      ,     ,†† ,

���
−−− ===

i
j

i
jn

i
jm gFD i

1
i

†
jn

1
i

†
jim

1
i

†
j dEuuEusQEu         ,        , .

These six equations can be written as a single six-dimensional matrix equation

kMp =

where the six-by-six matrix M and six-vectors p (parameters) and k (constants) are given
by
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where A, B, D, and F are 3x3 matrices and c and g are 3-vectors whose elements are
given above. The minimum χ 2 solution for v, the rotation-translation six-vector, is
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This shows that 1VM −= , or that the solution can be written

Vkp =

which expresses the parameters p in terms of their error matrix V times the constant
vector k.

Special case: pure translation, no rotation
To understand these formulas, consider some special cases.  If we set the rotation Q to
zero, then only jjn gF  and  are non-zero, yielding
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i

i
=
�

�
�

�

�
�−

−
−� �

1

,

The error matrix for the vector h  is

( )�
−− =

�
�

�

�

�
�

�

�
=

ihh k
1

ij
kj

jk uEuE †
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1
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In other words, for purely translational alignment, h is the weighted average of the
residuals, weighted by the inverses of their error matrices.  The error matrix E for h is
just the inverse of the sum of the weights.

Special case: pure rotation, no translation
Another special case is that of purely rotational alignment so that translation h is zero so
that only jmA  and jc  enter so that

j
m

mjm cA =�
=

3

1
θ ,      j=1,3,

��
−− ==

i
j

i
jm cA i

1
i

†
j

†
iim

1
iji dEQssQEQs         ,††

��
−

−
− �

�

�
�
�

�=
i

i
1

i
†
j

†
i

1

mji
im

1
i

†
j

†
im dEQssQEQsθ

where the expression in parentheses is supposed to mean the matrix Ajm or, in more clear
matrix-vector notation,

,
,
cAθ

cAθ
1−=

=

The error matrix for the vector θ is 1A− where the elements of A are given above. The
rotation vector θθθθ is, as was seen above for translation h, a weighted average over the
residuals di, but with a more complex weighting.  Note that Qjsi is the cross product of a
unit vector in the jth direction with the measurement location vector si , so it is a vector in
the direction that the measurement would move for a rotation about the jth axis.  This
means that the weighting takes into account that for a rotation, each residual moves in a
different direction, depending on its measurement location si.

Another way to get a feeling for the meaning of this special case is to using vector
analysis notation, in which

ii
m

mm sθsQ ×=�θ ,

where θ  is the axial vector with components mθ , so that
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( ) i
1

i
i

ji
i

i
1

iji dEQssθEQs −−
�� =× ††††

from which one can see that if the di are just displacements due to the small rotation θθθθ
with no other source of residuals, then ii sθd ×=  and the equation is exactly satisfied.


